СИСТЕМЫ УПРАВЛЕНИЯ И НАВЕДЕНИЯ КРЫЛАТЫХ РАКЕТ И ПЕРСПЕКТИВЫ ПРОТИВОДЕЙСТВИЯ ИМ

НАУКА И ВОЕННАЯ БЕЗОПАСНОСТЬ № 3/2008, стр. 60-64

ОПЫТ ЗАРУБЕЖНЫХ ГОСУДАРСТВ

СИСТЕМЫ УПРАВЛЕНИЯ И НАВЕДЕНИЯ КРЫЛАТЫХ РАКЕТ И ПЕРСПЕКТИВЫ ПРОТИВОДЕЙСТВИЯ ИМ

УДК 623.45

Подполковник С.М. СЫРОКВАШ,

научный сотрудник Научно-исследовательского института

Вооруженных Сил Республики Беларусь

В.И. МЕХЕДА,

научный сотрудник Научно-исследовательского института

Вооруженных Сил Республики Беларусь

Приводятся состав и функции подсистем наведения и управления, рассматриваются способы наведения крылатых ракет и принцип функционирования бортового оборудования, порядок боевого применения, возможные способы воздействия на системы управления и наведения крылатых ракет.

Анализ результатов войн и военных конфликтов последнего десятилетия позволяет сделать вывод о том, что решающую роль в решении военных задач в ходе их сыграло высокоточное оружие (ВТО).

Опыт участия вооруженных сил США в военных конфликтах последних десятилетий подтверждает, что Пентагон активно продвигается в направлении развития ВТО, стремясь в совершенстве овладеть им и придать ему значение основного оружия поражения. Так, если в ходе операции «Буря в пустыне» (1991 г.) доля ВТО в общем количестве примененных антииракской коалицией авиабоеприпасов составляла всего 7 %, то в ходе войны против Югославии этот показатель достиг уже более 90 %.

Характер разработок и применения ВТО показывает, что одним из основных его видов являются крылатые ракеты (КР), использующие различные способы наведения (рис. 1, табл. 1). Решающим фактором успешного применения КР является их детально продуманная конструкция и бортовые информационно-управляющие системы - системы управления и наведения (рис. 2).

КР позволяют с заданной точностью поражать цели на расстоянии до 5 тыс. км, оставляя при этом неуязвимыми их носители - боевые корабли, подводные лодки и стратегические бомбардировщики. Всё возрастающее количество применяемых вооруженными силами США КР свидетельствует, что эта тенденция сохранится и в будущем.

Анализ возможностей США позволяет предположить, что к 2010 г. они будут иметь такое количество высокоточных непилотируемых средств поражения воздушного и морского базирования, которого будет достаточно для проведения непрерывной бесконтактной стратегической воздушно-космическо-морской ударной операции в течение 30 и более суток.

При этом КР и ВТО, в целом, «подтягивают» за собой активное развитие систем обеспечения их применения и доставки. Тем самым в ближайшие годы на рынке вооружений сформируется спрос на КР воздушного и морского базирования и средства их доставки, а также навигационные средства, системы разведки, управления и средства обороны от массированных налетов КР.

1. Способы наведения крылатых ракет и принцип функционирования бортового оборудования

Важнейшим фактором, позволяющим реализовать боевые возможности КР, является их система управления и наведения. Главным элементом данной системы являются бортовые радио- и оптико-электронные средства КР, применяемые на различных этапах их полета.

Применение на КР различных подсистем управления и наведения обеспечивает заданные точностные параметры при поражении объекта (табл. 2).

СИСТЕМЫ УПРАВЛЕНИЯ И НАВЕДЕНИЯ КРЫЛАТЫХ РАКЕТ И ПЕРСПЕКТИВЫ ПРОТИВОДЕЙСТВИЯ ИМСИСТЕМЫ УПРАВЛЕНИЯ И НАВЕДЕНИЯ КРЫЛАТЫХ РАКЕТ И ПЕРСПЕКТИВЫ ПРОТИВОДЕЙСТВИЯ ИМСИСТЕМЫ УПРАВЛЕНИЯ И НАВЕДЕНИЯ КРЫЛАТЫХ РАКЕТ И ПЕРСПЕКТИВЫ ПРОТИВОДЕЙСТВИЯ ИМ

Последовательная эволюция бортовых систем управления и наведения в направлении комбинирования качеств бортовых подсистем позволила добиться повышения точности выхода КР к цели и ее поражения. Основываясь на опыте применения КР в локальных конфликтах, ВС США продолжают систематически проводить модернизацию систем управления и наведения КР.

В результате ряда модернизаций достигнуто значительное повышение точностных характеристик КР за счет внедрения системы коррекции траектории полета по контуру рельефа местности TERCOM (Terrain Contour Matching), оптической корреляционной системы конечного самонаведения DSMAC (Digital Scene Matching Area Correlator) и DSMAC2A, а также оснащения их аппаратурой коррекции местоположения системы спутниковой навигации GPS NAVSTAR.

Комбинирование и применение различных подсистем управления и наведения КР позволяет реализовать несколько способов ее наведения на цель. Комплектация КР зависит от типа (степени важности и защищенности) поражаемого объекта и соответствия критерию «стоимость - эффективность».

Инерциальное наведение представляет собой автономный способ управления полетом, основанный на свойстве инерции тел, без использования внешних источников информации.

Командное наведение ракеты осуществляется путем выдачи управляющих сигналов по радиоканалу, с борта самолета-носителя или спутника. Для этого в состав оборудования ракеты включаются дополнительные радиоэлектронные средства (РЭС).

Самонаведение ракеты на цель осуществляется с использованием демаскирующих излучений объекта (цели) в различных физических полях. Для этого на ракете устанавливаются головки активного, полуактивного или пассивного самонаведения. Обычно используются тешювизионные, лазерные, инфракрасные, радиолокационные головки самонаведения.

В настоящее время инерциальное наведение остается основным способом управления полетом ракеты. Однако в ходе управления ракетой инерциальным способом, под воздействием внутренних технических и внешних физических факторов, реальная траектория полета ракеты постепенно отклоняется от заданной. Ошибки, накапливаемые за время полета, приводят к тому, что ракета отклоняется от цели на значительные расстояния. Так, за один час полета ракеты типа Tomahawk отклонение траектории полета может составлять около 800 м. Поэтому на практике траектория полета ракеты периодически корректируется. Коррекция траектории полета ракеты осуществляется бортовым компьютером на основе информации, поступающей от дополнительно установленных на ней оптико- и радиоэлектронных датчиков: радиолокационного высотомера, приемника GPS, радиолокатора, лазерного локатора, электронно-оптического устройства съемки местности.

Рассмотрим механизмы коррекции траектории полета крылатой ракеты.

СИСТЕМЫ УПРАВЛЕНИЯ И НАВЕДЕНИЯ КРЫЛАТЫХ РАКЕТ И ПЕРСПЕКТИВЫ ПРОТИВОДЕЙСТВИЯ ИМ

Рис. 1. Состав и функции подсистем наведения и управления крылатых ракет

Так, в 1981 г. на крылатой ракете был впервые реализован механизм коррекции траектории полета по контуру рельефа местности TERCOM. Для этого в состав системы управления ракетой был включен бортовой радиовысотомер, а программное обеспечение бортового компьютера дополнено набором эталонных карт районов по маршруту полета.

Корреляционная подсистема AN/DPW-23 TERCOM состоит из ЭВМ, радиовысотомера и набора эталонных карт районов по маршруту полета. Ширина луча радиовысотомера 13 - 15°. Диапазон частот 4 - 8 ГГц.

Принцип работы подсистемы TERCOM основан на сопоставлении рельефа местности конкретного района (нахождения крылатой ракеты) с эталонными картами рельефа местности по маршруту ее полета. Определение рельефа местности осуществляется путем сравнения данных радио- и барометрического высотомеров. Устойчивость работы TERCOM и необходимая точность определения места крылатой ракеты достигаются путем выбора оптимального числа и размеров ячеек, чем меньше их размеры, тем точнее отслеживается рельеф местности, а следовательно, и местоположение ракеты. Однако из-за ограниченного объема памяти бортового компьютера и малого времени для решения навигационной задачи, принят нормальный размер 120x120 м.

Вся трасса полета крылатой ракеты над сушей разбивается на 64 района коррекции протяженностью по 7 - 8 км и шириной 2 - 48 км. Допустимая погрешность измерения высоты рельефа местности для надежной работы подсистемы TERCOM должна составлять 1 м. В результате применение данной подсистемы наведения обеспечивает круговое вероятностное отклонение (КВО), равное 80-150 м.

Комплексирование инерциальной и корреляционной подсистем наведения AN/DPW-23 TERCOM получило условное обозначение TAINS (ИНС + TERCOM).

В1986 году был реализован механизм электронно-оптической корреляции DSMAC (Digital Scene Matching Area Correlator) траектории полета КР.

В состав подсистемы входит цифровая камера на ПЗС-матрицах, которая снабжена усилителем сигнала второго поколения, а для применения в плохих метеоусловиях и в ночное время установлена ксеноновая вспышка. Диапазон рабочих частот матрицы составляет 0,6 - 1,3 мкм, разрешающая способность камеры 0,25 - 0,4 м.

В DSMAC используются эталонные цифровые «картинки» предварительно снятых районов местности по маршруту полета. Как правило, подсистема начинает работать на заключительном этапе полета после последней коррекции по TAINS.

В 1993 г. электронно-оптическая корреляционная подсистема DSMAC была модернизирована. В результате модернизации была создана телевизионно-оптическая корреляционная подсистема DSMAC-2A, в которой использовалась тепловизи-онная сканирующая цифровая видеокамера с увеличенными зоной обзора местности (до 70s) и памятью с заложенными эталонными цифровыми «картинками» районов.

Следующий шаг совершенствования механизма коррекции траектории полета КР был связан с использованием данных о местоположении ракеты от спутниковой навигационной системы GPS NAVSTAR.

В настоящее время на последних модификациях КР дополнительно осуществляется командное наведение ракеты на объект поражения за счет использования телевизионной подсистемы. При телеуправлении оператор наблюдает цель до момента ее поражения, совмещает изображение цели с отметкой от ракеты. Существует разновидность телеуправления, так называемое телеуправление второго рода, когда на исполнительном элементе имеется ГСН, которая передает изображение цели по радиоканалу на индикатор оператора комплекса ВТО. Если в процессе полета КР с помощью космических или самолетных средств разведки будет выявлено, что назначенная ей для поражения цель уничтожена другими КР, то по командам оператора, по линии системы GPS NAVSTAR или с самолетов дальнего радиолокационного обнаружения данная КР может быть перенацелена на другую цель.

СИСТЕМЫ УПРАВЛЕНИЯ И НАВЕДЕНИЯ КРЫЛАТЫХ РАКЕТ И ПЕРСПЕКТИВЫ ПРОТИВОДЕЙСТВИЯ ИМ

Рис. 2. Применение подсистем управления и наведения КР

На заключительном этапе полета для повышения точности попадания КР в цель реализуется способ самонаведения, который обеспечивается за счет использования различных типов ГСН.

Самонаведение применяется на заключительном этапе полета для обеспечения заданной точности попадания.

Лазерные (активные) ГСН реализуют самонаведение или командное наведение.

Все оптоэлектронные ГСН используют в качестве информации собственное излучение объектов (целей) в оптическом диапазоне длин волн. По физической природе построения и функционирования оптоэлектронные ГСН различаются: тепловизионные, телевизионные, светоконтрастные, инфракрасные и лазерные. По способу наведения - самонаведение или телеуправление.

Комбинированные или комплексные ГСН состоят из разнородных систем как конструктивно, так и информационно, построенные на основе совокупности радиолокационных и нерадиолокационных (магнитометрических, телевизионных, инерциальных и т.п.) датчиков.

Таким образом, в настоящее время разработанные и применяемые на КР системы наведения и управления обеспечивают необходимую точность поражения объектов противника с круговым вероятностным отклонением не более 3 м. В связи с этим дальнейшее направление модернизации КР, вероятно, будет связано с созданием радиоэлектронного оборудования высокой надежности и помехозащищенности, обеспечивающего надежный прием сигналов коррекции полета и команд управления.

2. Возможные способы воздействия на системы управления и наведения крылатых ракет

Большинство военных специалистов полагают, что отставание средств зашиты от уровня развития КР не является бесперспективным. Для успешной борьбы с КР необходимо вначале решить проблему, основу которой составляют вербальные и математические модели применения КР, их систем управления и наведения, а также сценарии функционирования систем противодействия. Важнейшим условием создания эффективной системы противодействия КР является также правильное определение критериев оценки эффективности противодействия их ударам. Опыт войн показывает, что главным критерием является все же не количество уничтоженных воздушных целей, а количество сохраненных защищаемых (прикрываемых) объектов. Тем самым в решении задач снижения эффективности ударов КР должны участвовать истребители, маловысотные ЗРК и ЗА, ПЗРК, ведущие огонь по визуально видимым целям и поэтому не подверженные радиоэлектронным помехам, а также средства РЭБ. По мнению экспертов, важнейшим условием эффективного решения задач активного противодействия ударам КР является снижение времени на обнаружение КР и их носителей, принятие решения на проведение мероприятий по их огневому и радиоэлектронному поражению. Достижение данной цели обеспечивается использованием автоматизированных систем сбора, обработки данных видов разведки и распределения полученной информации между всеми органами управления и средствами противодействия.

Способы противодействия системам управления и наведения КР подразделяются на активные, которые применяются на всем маршруте полета КР, и пассивные - применяемые в основном на заключительном участке полета. Активное и пассивное противодействие осуществляется комплексно, как собственным системам управления и наведения КР, так и системам КР, использующим внешние источники управления и наведения (РЭС управления, связи и передачи данных линий «КР -спутник-ретранслятор (ЛА-разведчик) - ПУ», «ПУ - КР», систему спутниковой радионавигации NAVSTAR).

Активными способами воздействия на системы управления и наведения крылатых ракет являются огневое и радиоэлектронное поражение.

Анализ характеристик и возможностей систем управления и наведения КР показывает, что достоинства и количество применяемых радио- и оптико-электронных средств являются и их недостатками. Поскольку данные средства имеют свои приемные тракты полезных сигналов, они же становятся потенциальными объектами не только огневого, но и радиоэлектронного поражения (радиоподавления и оптико-электронного подавления).

Критически важным параметром, обеспечивающим высокую эффективность КР, является точность попадания ударного элемента в цель. Тем самым данный параметр выбран в качестве основного критерия для определения основных радиоэлектронных объектов и целей, воздействие на которые не обеспечивает выполнение заданных точностных параметров при нанесении удара. Это влечет за собой снижение эффективности применения КР и в конечном итоге срыв выполнения боевой задачи.

Проведенный анализ тактико-технических характеристик бортовых РЭС КР, порядка применения систем ВТО в ходе военных конфликтов последних лет позволяет выявить их основные уязвимые компоненты.

1. Радиоэлектронные средства, используемые для управления и радиотехнического обеспечения применения КР:

РЭС управления полетом, связи и передачи данных систем управления КР;

бортовые РЛС систем радиолокационного обнаружения и управления.

2. Бортовые радиоэлектронные средства КР:

головки самонаведения КР, функционирующие в различных физических полях электромагнитного спектра;

приемные устройства систем радионавигации;

бортовые РЭС корреляционных инерциальных систем наведения (типа TERCOM, INS), оптическая корреляционная система конечного самонаведения DSMAC.

Таким образом, по мнению зарубежных специалистов, возможными активными способами воздействия на системы управления и наведения крылатых ракет и радиоэлектронными средствами, используемыми для их управления и радиотехнического обеспечения, являются:

радиоэлектронное подавление РЭС управления полетом, связи и передачи данных систем управления КР;

радиоэлектронное подавление бортовых РЛС разведывательных радиолокационных систем и средств;

оптико- и радиоэлектронное подавление электронных элементов головок самонаведения КР;

радиоподавление приемных устройств различных систем радионавигации, систем наведения и коррекции маршрута полета.

Одним из перспективных направлений зарубежными специалистами отмечается также возможное воздействие на электронные элементы средствами, реализованными на новых физических принципах и использующими передовые достижения в области волновой теории.

Нельзя забывать о значительной роли в процессе воздействия на системы управления и наведения крылатых ракет проводимых мероприятий пассивной защиты объектов.

К таким мероприятиям пассивной защиты объектов от ударов КР можно отнести:

применение мер радио- и оптической дезинформации;

применение химических составов с широким диапазоном маскирующего действия для снижения оптической заметности войск и объектов;

применение радиопоглощающих материалов и маскирующих пенных покрытий для снижения заметности войск и объектов;

организацию режимно-охранных мероприятий в зонах и районах, прилегающих к важным объектам, местам сосредоточения войск;

эффективное выполнение требований скрытого управления войсками;

максимальное использование защитных и маскирующих свойств местности.

Результаты расчетов показывают, что проведение работ, связанных с использованием для защиты войск и объектов только средств подавления систем радионавигации, РЭС управления КР, бортовых РЛС систем радиолокационного обнаружения, обеспечивает снижение эффективности применения высокоточных средств поражения не менее чем в два раза путем увеличения показателей кругового вероятного отклонения ГСН, снижения возможностей средств разведки по обнаружению объектов, наведения КР и средств доставки.

Таким образом, направление создания и развития средств подавления РЭС радионавигационных и радиолокационных систем КР, линий управления ими, средств активного и пассивного противодействия электронным элементам ГСН является наиболее перспективным в борьбе против КР.

ЛИТЕРАТУРА

1. Василин Н.Я. Крылатые ракеты. Аналитический сборник. - Мн.: НИИВСРБ, 2003. - С. 18-24.

2. Краснов А. Боевое применение крылатых ракет воздушного базирования // Зарубежное военное обозрение. - 2001. - № 2. - С. 30-35.

3. Jane's. Strategic weapon systems//AGM-86ALCM. - 1997.

4. [Электронныйресурс]. - Режим доступа: http://www.militaryparitet. сот-//Стратегические крылатые ракеты морского базирования, 2008.

5. [ Электронный ресурс]. - Режим доступа: http://www.km.ru// BGM-109.

6. [Электронный ресурс]. - Режим доступа: http://www.fas.org/ man/dod-101/sis/smart/jassm.htm.

7. [Электронный ресурс]. - Режим доступа: http://www.fas.org/ man/dod-101/sis/smart/AGMm-84.htm.

8. [Электронный ресурс]. - Режим доступа: http://www.fas.org/ man/dod-101/sis/smart/AGM-86c.htm.

9. [Электронный ресурс]. - Режим доступа: http://www.fas.org/ man/dod-101/sis/smart/BGM-109.htm.

10. [Электронныйресурс]. - Режим доступа: http://www.tgplanes.

com/- Tgplanes Avintinn Director


Для комментирования необходимо зарегистрироваться на сайте

  • <a href="http://www.instaforex.com/ru/?x=NKX" data-mce-href="http://www.instaforex.com/ru/?x=NKX">InstaForex</a>
  • share4you сервис для новичков и профессионалов
  • Animation
  • На развитие сайта

    нам необходимо оплачивать отдельные сервера для хранения такого объема информации